Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A 1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well DFB laser by MOCVD

Identifieur interne : 001693 ( Chine/Analysis ); précédent : 001692; suivant : 001694

A 1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well DFB laser by MOCVD

Auteurs : RBID : Pascal:06-0397146

Descripteurs français

English descriptors

Abstract

1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1 X dG dn.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0397146

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A 1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well DFB laser by MOCVD</title>
<author>
<name>RUIYING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Beijing Jiao Tong University</s1>
<s2>100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing Jiao Tong University</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Electrical & Electronic Engineering, University of Bristol</s1>
<s2>Bristol, BS8 1TR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Bristol, BS8 1TR</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FAN ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BAOJUN WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LUFENG WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JING BIAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LINGJUAN ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HONGLIANG ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHUISHENG JIAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Beijing Jiao Tong University</s1>
<s2>100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing Jiao Tong University</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0397146</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0397146 INIST</idno>
<idno type="RBID">Pascal:06-0397146</idno>
<idno type="wicri:Area/Main/Corpus">008A59</idno>
<idno type="wicri:Area/Main/Repository">009177</idno>
<idno type="wicri:Area/Chine/Extraction">001693</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Auger recombination</term>
<term>CVD</term>
<term>Distributed feedback lasers</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Gallium phosphides</term>
<term>Indium arsenides</term>
<term>Indium phosphides</term>
<term>MOCVD</term>
<term>Multiple quantum well</term>
<term>Quaternary compounds</term>
<term>Threshold current</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Courant seuil</term>
<term>Effet tunnel</term>
<term>Laser réaction répartie</term>
<term>Méthode MOCVD</term>
<term>Etude expérimentale</term>
<term>Dépôt chimique phase vapeur</term>
<term>Puits quantique multiple</term>
<term>Composé quaternaire</term>
<term>Gallium arséniure</term>
<term>Indium arséniure</term>
<term>Indium phosphure</term>
<term>Gallium phosphure</term>
<term>Recombinaison Auger</term>
<term>InGaAsP</term>
<term>As Ga In P</term>
<term>4255P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1 X dG dn.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A 1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well DFB laser by MOCVD</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RUIYING ZHANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WEI WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FAN ZHOU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAOJUN WANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LUFENG WANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JING BIAN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LINGJUAN ZHAO</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HONGLIANG ZHU</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SHUISHENG JIAN</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Semiconductors, Chinese Academy of Sciences</s1>
<s2>100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Beijing Jiao Tong University</s1>
<s2>100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Electrical & Electronic Engineering, University of Bristol</s1>
<s2>Bristol, BS8 1TR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>306-310</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000132866210200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0397146</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1 X dG dn.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Laser réaction répartie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Distributed feedback lasers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>CVD</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>53</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
<s5>54</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Recombinaison Auger</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Auger recombination</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Recombinación Auger</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InGaAsP</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>261</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001693 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001693 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:06-0397146
   |texte=   A 1.5 μm n-type InGaAsP/InGaAsP modulation-doped multiple quantum well DFB laser by MOCVD
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024